康仁科

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 国际磨粒技术学会(International Committee of Abrasive Technology, ICAT)委员,中国机械工程学会极端制造分会副主任、生产工程分会常务委员、微纳米制造技术分会常务委员,中国机械工程学会生产工程分会磨粒加工技术专业委员会副主任、切削加工专业委员会常委委员、精密工程与微纳技术专业委员会常委委员,中国机械工程学会特种加工分会超声加工技术委员会副主任,中国机械工程学会摩擦学分会微纳制造摩擦学专业委员会常务委员,中国机械工业金属切削刀具协会切削先进制造技术研究会常务理事、对外学术交流工作委员会副主任、切削先进制造技术研究会自动化加工技术与系统委员会副主任。

性别:男

毕业院校:西北工业大学

学位:博士

所在单位:机械工程学院

学科:机械制造及其自动化. 机械电子工程. 航空宇航制造工程

办公地点:机械工程学院7191

电子邮箱:kangrk@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Novel rotating-vibrating magnetic abrasive polishing method for double layered internal surface finishing

点击次数:

论文类型:期刊论文

发表时间:2019-02-01

发表刊物:JOURNAL OF MATERIALS PROCESSING TECHNOLOGY

收录刊物:SCIE、Scopus

卷号:264

页面范围:422-437

ISSN号:0924-0136

关键字:Additive manufacturing (AM); Internal surface finishing; Selective laser melting (SLM); Inconel 718; Magnetic field; Surface integrity

摘要:Components with complex internal surfaces are increasingly important for gas and fluid flow applications in aerospace and automotive industries. Recently, as an emerging manufacturing technology, three-dimensional (3D) additive manufacturing (AM) technology enables one-step fabrication of these complex internal surfaces. Although 3D AM technology eliminates the need for complex assembly process, due to the poor surface and subsurface integrity, achieving a favourable surface condition is challenging. Therefore, a post-polishing process is essential for these 3D AM complex internal surfaces. This paper presents a novel rotating-vibrating magnetic abrasive polishing method to finish a kind of complex internal surface which has a double-layered tube structure made by selective laser melting (SLM) of Inconel 718. The principle of the method was illustrated and the material removal process was modelled. The feasibility of the method was verified and the surface evolution mechanism under different motions was revealed. The effects of process parameters on material removal and surface quality were evaluated quantitatively. The results showed that material was uniformly removed from both of the external surface of inner tube and internal surface of outer tube. The uneven surface caused by partially melt powders during SLM process was smoothed and the surface roughness was reduced from about 7 pm Ra to less than 1 mu m Ra. Relatively higher material removal efficiency and lower surface roughness were obtained through combining rotation and vibration motions. The surface quality was improved representing by the increase of surface nanohardness and release of residual stress after polishing. There was no subsurface deformation and damage observed so that a damage-free surface was obtained.