location: Current position: Home >> Scientific Research >> Paper Publications

Modelling of Generalised Thermoelastic Wave Propagation of Multilayer Material under Thermal Shock Behaviour

Hits:

Indexed by:期刊论文

Date of Publication:2017-01-01

Journal:SHOCK AND VIBRATION

Included Journals:SCIE、EI

Volume:2017

ISSN No.:1070-9622

Abstract:This paper describes a time-discontinuous Galerkin finite elementmethod (DGFEM-beta(c)) for the generalised thermoelastic problem of multilayer materials subjected to a transient high-frequency heat source. The governing and constitutive relations are presented on the basis of the well-known Lord-Shulman (L-S) theory. A DGFEM-beta(c) method is developed to allow the general temperaturedisplacement vector and its temporal gradient to be discontinuous at a fixed time... A stiffness proportional artificial damping term is added to the final DG discretisation form to filter out the spurious numerical oscillations in the wave-after stage and at adjacentlayer interfaces. The numerical results show that the present DGFEM-beta(c) provides much more accurate solutions for generalised thermoelastic coupled behaviour of multilayer structures. Compared with widely used traditional numerical methods (e. g., the Newmark method), the present DGFEM-beta(c) can effectively capture the discontinuities behaviours of impulsive waves in space in the simulation of high modes and sharp gradients.

Pre One:热冲击作用下层合皮肤组织热传导过程数值模拟

Next One:Motion characteristic analysis of a floating structure in the South China Sea based on prototype monitoring