杜立群

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:东北大学

学位:博士

所在单位:机械工程学院

学科:机械制造及其自动化. 微机电工程. 机械电子工程

办公地点:西部校区机械学院新大楼6009房间

电子邮箱:duliqun@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Enhancing the adhesion strength of micro electroforming layer by ultrasonic agitation method and the application

点击次数:

论文类型:期刊论文

发表时间:2021-01-30

发表刊物:ULTRASONICS SONOCHEMISTRY

卷号:33

页面范围:10-17

ISSN号:1350-4177

关键字:MEMS; Micro electroforming; Ultrasonic power; Ultrasonic frequency; Adhesion strength; Polarization

摘要:Micro electroforming is widely used for fabricating micro metal devices in Micro Electro Mechanism System (MEMS). However, there is the problem of poor adhesion strength between micro electroforming layer and substrate. This dramatically influences the dimensional accuracy of the device. To solve this problem, ultrasonic agitation method is applied during the micro electroforming process. To explore the effect of the ultrasonic agitation on the adhesion strength, micro electroforming experiments were carried out under different ultrasonic power (0 W,100 W, 150 W, 200 W, 250 W) and different ultrasonic frequencies (0 kHz, 40 kHz, 80 kHz, 120 kHz, 200 kHz). The effects of the ultrasonic power and the ultrasonic frequency on the micro electroforming process were investigated by polarization method and alternating current (a.c.) impedance method. The adhesion strength between the electroforming layer and the substrate was measured by scratch test. The compressive stress of the electroforming layer was measured by X-ray Diffraction (XRD) method. The crystallite size of the electroforming layer was measured by Transmission Electron Microscopy (TEM) method. The internal contact surface area of the electroforming layer was measured by cyclic voltammetry (CV) method. The experimental results indicate that the ultrasonic agitation can decrease the polarization overpotential and increase the charge transfer process. Generally, the internal contact surface area is increased and the compressive stress is reduced. And then the adhesion strength is enhanced. Due to the different depolarization effects of the ultrasonic power and the ultrasonic frequency, the effects on strengthening the adhesion strength are different. When the ultrasonic agitation is 200 W and 40 kHz, the effect on strengthening the adhesion strength is the best. In order to prove the effect which the ultrasonic agitation can improve the adhesion strength of the micro devices, micro pillar arrays were fabricated under ultrasonic agitation (200 W, 40 kHz). The experimental results show that the residual rate of the micro pillar arrays is increased about 17% by ultrasonic agitation method. This work contributes to fabricating the electroforming layer with large adhesion strength. (C) 2016 Elsevier B.V. All rights reserved.