李风泉

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:复旦大学

学位:博士

所在单位:数学科学学院

学科:应用数学

办公地点:大连理工大学主校区科技园大厦A1124

联系方式:Tel:0411-84708351-8124

电子邮箱:fqli@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Liouville type theorems for Schrodinger systems

点击次数:

论文类型:期刊论文

发表时间:2015-01-01

发表刊物:SCIENCE CHINA-MATHEMATICS

收录刊物:SCIE、Scopus

卷号:58

期号:1

页面范围:179-196

ISSN号:1674-7283

关键字:Schrodinger systems; poly-harmonic operators; Dirichlet boundary conditions; method of moving planes in integral forms; Kelvin transforms; monotonicity; rotational symmetry; non-existence

摘要:We study positive solutions to the following higher order Schrodinger system with Dirichlet boundary conditions on a half space: where alpha is any even number between 0 and n. This PDE system is closely related to the integral system where G is the corresponding Green's function on the half space. More precisely, we show that every solution to (0.2) satisfies (0.1), and we believe that the converse is also true. We establish a Liouville type theorem - the non-existence of positive solutions to (0.2) under a very weak condition that u and v are only locally integrable. Some new ideas are involved in the proof, which can be applied to a system of more equations.