location: Current position: Home >> Scientific Research >> Paper Publications

Improvement of the specific capacitance of V2O5 nanobelts as supercapacitor electrode by tungsten doping

Hits:

Indexed by:期刊论文

Date of Publication:2017-01-15

Journal:MATERIALS CHEMISTRY AND PHYSICS

Included Journals:SCIE、EI

Volume:186

Page Number:5-10

ISSN No.:0254-0584

Key Words:V2O5 nanobelts; Tungsten doping; Electrical properties; Specific capacitance

Abstract:Tungsten doped vanadium pentoxide (W-doped V2O5) nanobelts were successfully synthesized by a facile hydrothermal route and combination of calcination. The results revealed that W atoms were successfully doped into the crystal lattice of V2O5 matrix, indicating that the homogeneous solid solutions of W-doped V2O5 nanobelts were obtained. The electrochemical properties of W-doped V2O5 nanobelts as supercapacitor electrode were investigated by cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) methods. W-doped V205 nanobelts exhibit the excellent capacity and good rate capability. Their specific capacitance are 407, 381, 350, 328, 295 and 273 F g(-1) at the current density of 0.5,1, 2, 5,10 and 20 Ag-1, respectively. W-doped V205 nanobelts also show excellent energy densities of 246, 217, 212, 199, 178 and 165 W h kg(-1) at a power densities of 0.99, 1.98, 3.96, 9.90, 19.80 and 39.60 kW kg-1. The specific capacitance of W-doped V2O5 nanobelts is much higher than the previous values of V2O5 materials, achieving the aim of improving the specific capacitance of V2O5 nanobelts. (C) 2016 Elsevier B.V. All rights reserved.

Pre One:Facile preparation, optical and electrochemical properties of layer-by-layer V2O5 quadrate structures

Next One:Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor