个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:日本东京大学
学位:博士
所在单位:化工学院
电子邮箱:qujp@dlut.edu.cn
Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study.
点击次数:
论文类型:期刊论文
发表时间:2018-04-01
发表刊物:Chemosphere
收录刊物:SCIE、EI、PubMed
卷号:197
页面范围:569-575
ISSN号:1879-1298
关键字:DFT,Five-membered SAs,Multi-step S‒,N cleavage,Photolysis mechanisms
摘要:Quantum chemical calculations have been performed to investigate the photolysis mechanism of relatively susceptible sulfonamide moiety of five-membered sulfonamide (SA) antibiotics, such as sulfamethoxazole, sulfisoxazole, sulfamethizole, and sulfathiazole. The results show that the ·OH-mediated indirect photolysis of sulfonamide linkage has two possible multi-step reaction pathways, viz., H-abstraction and electrophilic C1-attack, which is contrast to previously reported one-step cleavage manner. The newly proposed indirect photolysis mechanisms could be applied to six-membered SAs such as sulfadimethoxine. It has been found that the dissociation of SN bond is easier in direct photolysis than ·OH-mediated indirect photolysis. Wiberg bond index and LUMO-HOMO energy gap are investigated to clarify the origin of the discrepant reactivity of sulfonamide moiety of SAs at singlet and triplet states. In comparison with singlet states, the SN bond of SAs is weaker at triplet states of SAs and thus results in higher reactivity of sulfonamide moiety, as also suggested by smaller LUMO-HOMO energy gap. This study could add better understanding to the photolysis mechanisms of SAs, which would be also helpful in utilizing quantum chemistry calculation to investigate the behavior and fate of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.