Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges

Hits : Praise

Indexed by:期刊论文

Date of Publication:2014-02-01

Journal:RENEWABLE & SUSTAINABLE ENERGY REVIEWS

Included Journals:SCIE、EI、ESI高被引论文、Scopus

Volume:30

Page Number:950-960

ISSN No.:1364-0321

Key Words:Glycerol steam reforming; Sorption-enhanced steam reforming process (SERP); High-purity hydrogen; Catalyst; Sorbent for CO2 removal

Abstract:The objective of this review is to analyze potential technologies and their baseline performance of producing hydrogen from catalytic steam reforming of biodiesel byproduct glycerol. High oxygen content and high impurity level of biodiesel byproduct glycerol, as well as the complex intermediates and high coking potential in its thermal degradation, make the modeling, design, and operation of glycerol steam reforming a challenge. Thermal decomposition characterization of biodiesel byproduct glycerol was covered, and the recent developments and methods for high-purity hydrogen production from glycerol steam reforming were illustrated. The thermodynamics constraint of water gas shift reaction can be overcome by the sorption-enhanced steam reforming process, which integrated catalytic steam reforming, water gas shift reaction and in-situ CO2 removal at high temperatures in a single stage reactor. The effectiveness of both the enhanced H-2 production and the use of CO2 sorbents have been demonstrated and discussed. The technical challenges to achieve a stable high-purity hydrogen production by the sorption-enhanced steam reforming process included extending operation time, selecting suitable sorbents, finding a way for continuous reaction-regeneration of catalyst and sorbent mixture and improving process efficiencies. The continuous sorption-enhanced steam reforming of glycerol was designed by a simultaneous flow concept of catalyst and sorbent for continuous reaction-regeneration using two slow moving-bed reactors for high-purity hydrogen production and CO2 capture, and in this process, catalyst and sorbent were run in nearly fresh state for H-2 production. The sorption-enhanced chemical-looping reforming was also demonstrated. The paper discusses some issues and challenges, along with the possible solutions in order to help in efficient production of hydrogen from catalytic steam reforming of biodiesel byproduct glycerol. (C) 2013 Elsevier Ltd. All rights reserved.