Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Dynamic measurements of hydrate based gas separation in cooled silica gel

Hits : Praise

Indexed by:期刊论文

Date of Publication:2014-01-25

Journal:JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY

Included Journals:SCIE、EI、Scopus

Volume:20

Issue:1

Page Number:322-330

ISSN No.:1226-086X

Key Words:CO2/H-2; Gas separation; Hydrate; Dynamic

Abstract:Hydrate based gas separation is a promising method for carbon dioxide capture. The purpose of this study is to analyze hydrates formation and dissociation characters when gas mixture flows through cooled silica gel. The additives mixture (THF/SDS) was used to saturate the silica gel partly, and gas mixture (CO2/H-2) was injected into it to form hydrates. Magnetic resonance imaging (MRI) images were obtained using fast spin echo multi-slice pulse sequence. Hydrates saturations were calculated quantitatively using MRI data. The experimental results showed that the optimal initial solution saturation was 34.2% in this investigation. The gas component was analyzed to assess the separation efficiency. For hydrates dissociation processes at 1 atmospheric pressure, CO2 concentrations increased obviously. Half of the six cycles showed that more than 85.00 mol% CO2 contained in the capture gas, and the lowest CO2 concentration was 64.83 mol%. Hydrate blockages appeared frequently, which restricted the contact of gas and solution and caused the incomplete transformations of residual solution to hydrates. It was a key restricted factor for hydrate based CO2 capture. (C) 2013 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.