刘晓东   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

MORE> Recommended Ph.D.Supervisor Recommended MA Supervisor Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:A parsimony fuzzy rule-based classifier using axiomatic fuzzy set theory and support vector machines

Hits:

Date of Publication:2011-12-01

Journal:INFORMATION SCIENCES

Included Journals:Scopus、SCIE、EI

Volume:181

Issue:23

Page Number:5180-5193

ISSN No.:0020-0255

Key Words:Interpretability; AFS algebras; Support vector machines; Outliers; Fuzzy descriptions

Abstract:This paper proposes a classification method that is based on easily interpretable fuzzy rules and fully capitalizes on the two key technologies, namely pruning the outliers in the training data by SVMs (support vector machines), i.e., eliminating the influence of outliers on the learning process; finding a fuzzy set with sound linguistic interpretation to describe each class based on AFS (axiomatic fuzzy set) theory. Compared with other fuzzy rule-based methods, the proposed models are usually more compact and easily understandable for the users since each class is described by much fewer rules. The proposed method also comes with two other advantages, namely, each rule obtained from the proposed algorithm is simply a conjunction of some linguistic terms, there are no parameters that are required to be tuned. The proposed classification method is compared with the previously published fuzzy rule-based classifiers by testing them on 16 UCI data sets. The results show that the fuzzy rule-based classifier presented in this paper, offers a compact, understandable and accurate classification scheme. A balance is achieved between the interpretability and the accuracy. (C) 2011 Elsevier Inc. All rights reserved.

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..