樊江莉

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区F-206

联系方式:fanjl@dlut.edu.cn

电子邮箱:fanjl@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Highly Sensitive and Fast-Responsive Fluorescent Chemosensor for Palladium: Reversible Sensing and Visible Recovery

点击次数:

论文类型:期刊论文

发表时间:2012-09-01

发表刊物:CHEMISTRY-A EUROPEAN JOURNAL

收录刊物:SCIE、EI、PubMed、Scopus

卷号:18

期号:39

页面范围:12242-12250

ISSN号:0947-6539

关键字:fluorescent probes; lactams; palladium; sensors; spiro compounds

摘要:The well-known rhodamine spiro-lactam framework offers an ideal model for the development of fluorescence-enhanced chemosensors through simple and convenient syntheses. Herein, we report a new tridentate PNO receptor, which was introduced into a rhodamine spiro-lactam system to develop Pd2+-chemosensor RPd4, that displayed significantly improved sensing properties for palladium. Compound RPd4 shows a very fast response time (about 5 s), high sensitivity (5 nM), and excellent specificity for Pd2+ ions over other PGE ions (Pt2+, Rh3+, and Ru3+). In addition, RPd4 displays quite different responses to different valence states of the Pd ions, that is, very fast response towards Pd2+ ions but slow response towards Pd0, which may provide us with a convenient method for the selective discrimination of Pd species in different valence states. According to proof-of-concept experiments, RPd4 has potential applications in Pd2+-analysis in drug compounds, water, soil, and leaf samples. Owing to its good reversibility, RPd4 can also be used as a sensor material for the selective detection and visual recovery of trace Pd2+ ions in environmental samples.