location: Current position: Home >> Scientific Research >> Paper Publications

Organic Triplet Sensitizer Library Derived from a Single Chromophore (BODIPY) with Long-Lived Triplet Excited State for Triplet-Triplet Annihilation Based Upconversion

Hits:

Indexed by:期刊论文

Date of Publication:2011-09-02

Journal:JOURNAL OF ORGANIC CHEMISTRY

Included Journals:ESI高被引论文、Scopus、SCIE、EI、PubMed

Volume:76

Issue:17

Page Number:7056-7064

ISSN No.:0022-3263

Abstract:Triplet-triplet annihilation (TTA) based upconversions are attractive as a result of their readily tunable excitation/emission wavelength, low excitation power density, and high upconversion quantum yield. For TTA upconversion, triplet sensitizers and acceptors are combined to harvest the irradiation energy and to acquire emission at higher energy through triplet-triplet energy transfer (TTET) and TTA processes. Currently the triplet sensitizers are limited to the phosphorescent transition metal complexes, for which the tuning of UV-vis absorption and T(1) excited state energy level is difficult. Herein for the first time we proposed a library of organic triplet sensitizers based on a single chromophore of boron-dipyrromethene (BODIPY). The organic sensitizers show intense UV-vis absorptions at 510-629 nm (epsilon up to 180,000 M(-1) cm(-1)). Long-lived triplet excited state (tau(T) up to 66.3 mu s) is populated upon excitation of the sensitizers, proved by nanosecond time-resolved transient difference absorption spectra and DFT calculations. With perylene or 1-chloro-9,10-bis(phenylethynyl)anthracene (1CBPEA) as the triplet acceptors, significant upconversion (Phi(UC) up to 6.1%) was observed for solution samples and polymer films, and the anti-Stokes shift was up to 0.56 eV. Our results pave the way for the design of organic triplet sensitizers and their applications in photovoltaics and upconversions, etc.

Pre One:Accessing the long-lived near-IR-emissive triplet excited state in naphthalenediimide with light-harvesting diimine platinum(II) bisacetylide complex and its application for upconversion

Next One:Molecular Rotors as Fluorescent Viscosity Sensors: Molecular Design, Polarity Sensitivity, Dipole Moments Changes, Screening Solvents, and Deactivation Channel of the Excited States