郭慧敏

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:Regensburg大学

学位:博士

所在单位:化学学院

学科:分析化学

电子邮箱:guohm@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Ruthenium(II)-Polyimine-Coumarin Light-Harvesting Molecular Arrays: Design Rationale and Application for Triplet-Triplet-Annihilation-Based Upconversion

点击次数:

论文类型:期刊论文

发表时间:2012-04-01

发表刊物:CHEMISTRY-A EUROPEAN JOURNAL

收录刊物:SCIE、EI、PubMed、Scopus

卷号:18

期号:16

页面范围:4953-4964

ISSN号:0947-6539

关键字:coumarin; light-harvesting; phosphorescence; photochemistry; ruthenium

摘要:RuIIbis-pyridine complexes typically absorb below 450 nm in the UV spectrum and their molar extinction coefficients are only moderate (e<16?000?M-1?cm-1). Thus, RuIIpolyimine complexes that show intense visible-light absorptions are of great interest. However, no effective light-harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible-light-harvesting RuIIcoumarin arrays, which absorb at 475 nm (e up to 63?300?M-1?cm-1, 4-fold higher than typical RuIIpolyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy-transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady-state and time-resolved spectroscopy and DFT calculations, we proposed a general rule for the design of RuIIpolypyridinechromophore light-harvesting arrays, which states that the 1IL energy level of the ligand must be close to the respective energy level of the metal-to-ligand charge-transfer (MLCT) states. Lower energy levels of 1IL/3IL than the corresponding 1MLCT/3MLCT states frustrate the cascade energy-transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light-harvesting effect can be used to improve the upconversion quantum yield to 15.2?% (with 9,10-diphenylanthracene as a triplet-acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95?%.