Chunan Tang   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Main positions: President of international exchange committee of the Chinese Society of Rock Mechanics and Engineering CSRME
Other Post: Vice President of the Chinese Society of Rock Mechanics and Engineering CSRME

MORE> Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:Effect of injection rate on hydraulic fracturing in naturally fractured shale formations: a numerical study

Hits:

Date of Publication:2016-06-01

Journal:ENVIRONMENTAL EARTH SCIENCES

Included Journals:SCIE、EI、Scopus

Volume:75

Issue:11

ISSN No.:1866-6280

Key Words:Hydraulic fracturing; Injection rate; DFN; Flow-stress-damage coupling approach

Abstract:This paper studies the effect of fluid injection rate on hydraulic fracturing in pre-existing discrete fracture network (DFN) formations. A flow-stress-damage coupling approach has been used in an initial attempt toward how reservoir responses to injection rate under different DFN connected configuration states. The simulation results show that injection rate has an significant influence on the hydraulic fractures (HF) and DFN interaction and hydraulic fracturing effectiveness, which can be characterized by the total interaction area, stimulated DFN length, stimulated HF length and leak-off ratio. For the sparse DFN model, stimulated HF length increases with increasing injection rate and the stimulated DFN length decreases with the increasing injection rate. For the medium DFN model, stimulated HF and DFN length both increase with increasing of injection rate. For the dense DFN model, length of stimulated HF deceases with increasing injection rate; however, the stimulated DFN length increases with the increasing injection rate. The effect of injection rate on hydraulic fracturing is closely related to formation characteristics, which are strongly affected by the DFN connected configuration. For the studied fracture network, the sparse DFN model gets the optimal hydraulic fracturing effectiveness with lower injection rate; however, the dense DFN model has the best hydraulic fracturing effectiveness with higher injection rate. This work strongly links the production technology and hydraulic fracturing effectiveness evaluation and aids in the understanding and optimization of hydraulic fracturing simulations in naturally fractured reservoirs.

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..