邓德伟

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:材料科学与工程学院

学科:材料加工工程. 材料表面工程

办公地点:大连甘井子区软件园路80号大连理工大学科技园大厦B座510房间

联系方式:HANDY:13998509875 TEL: 86-411-84706561-8051 FAX: 86-411-84788732 deng@dlut.edu.cn 191753572@qq.com

电子邮箱:deng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

The Effect of Arc Current on the Microstructure and Wear Characteristics of Stellite12 Coatings Deposited by PTA on Duplex Stainless Steel

点击次数:

论文类型:期刊论文

发表时间:2013-01-01

发表刊物:MATERIALS TRANSACTIONS

收录刊物:SCIE、EI、Scopus

卷号:54

期号:9

页面范围:1851-1856

ISSN号:1345-9678

关键字:plasma transferred arc; Stellite12 cobalt-based alloy; 2507 duplex stainless steel; current intensity

摘要:Plasma transferred arc welding (PTAW) is widely employed to improve the quality of components whose surface is subjected to severe wear conditions. However, the wear properties of these coatings is significantly affected by the welding process adopted during the deposition of the coatings. This paper details an investigation of the microstructure, composition, hardness and wear characteristics of Stellite12 Co-based coatings with different welding currents. Optical microscopy (OP), scanning electron microscopy/energy dispersive spectrum analysis (SEM/EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the microstructure. An increase in the arc current increased the dilution of the DSS and changed the composition as well as the dendritic arms coarsening of the Co-based coatings. Increasing the arc current gives rise to a reduction in the hardness of the coatings, whereas reduction in the hardness of the coatings is accompanied by a reduction in their wear resistance with the exception of the lowest current sample. Additionally, the microstructure of the welding heat affected zone (HAZ) during PTAW was also studied. The heat affected zone was decorated with some needle-type austenites nucleated from grain boundary austenite, but without sigma-phase. Moreover, some chromium-rich precipitates were also detected in the welding heat affected zone of the specimens during PTAW.