个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 大连理工大学成都研究院院长
性别:男
毕业院校:中科院大连化学物理研究所
学位:博士
所在单位:化工学院
学科:化学工艺. 物理化学. 功能材料化学与化工
办公地点:大连理工大学西部校区化工综合楼A401室
联系方式:辽宁省大连市高新区凌工路2号,邮编116024
电子邮箱:changhai@dlut.edu.cn
Integrated electrocatalytic processing of levulinic acid and formic acid to produce biofuel intermediate valeric acid
点击次数:
论文类型:期刊论文
发表时间:2014-01-01
发表刊物:GREEN CHEMISTRY
收录刊物:SCIE、Scopus
卷号:16
期号:3
页面范围:1305-1315
ISSN号:1463-9262
摘要:Herein, we report integrated electrocatalytic processing of simulated acid-catalyzed cellulose hydrolysis downstream (levulinic acid + formic acid) to the biofuel intermediate valeric acid (VA). This green electro-biorefining process does not require complex steps to separate levulinic acid and formic acid (FA) from H2SO4; instead it couples electrocatalytic hydrogenation (ECH) of levulinic acid (LA) in a single electrocatalytic flow cell reactor and electrocatalytic oxidation of formic acid in a proton exchange membrane-direct formic acid fuel cell (DFAFC). The presence of FA has shown no negative effect on the ECH of LA and a high VA selectivity of >90% can be achieved on a non-precious Pb electrode while the Faradaic efficiency remains >47% during 8 hours of reaction in the single electrocatalytic flow cell reactor. This stream is fed directly to the DFAFC with a Pd/C anode catalyst to self-sustainably remove FA where 47% conversion of FA can be reached in 6 hours. However, electro-oxidation of FA over Pd/C appears to be reversibly inhibited by the product VA produced during ECH of LA. The electro-oxidation of FA + C-2-C-5 alkyl carboxylic acid in the half cell study shows that such an inhibition effect could have originated from the -COOH adsorption on the Pd surface. Higher carboxylic acid concentration and longer carbon chain lead to more serious loss of the electrocatalytic surface area (ECSA) of Pd/C.