location: Current position: Home >> Scientific Research >> Paper Publications

Practical Diagrammatical Technique for 3-DOF Bridge Flutter Analysis

Hits:

Indexed by:期刊论文

Date of Publication:2014-12-01

Journal:JOURNAL OF BRIDGE ENGINEERING

Included Journals:SCIE、Scopus

Volume:19

Issue:12

ISSN No.:1084-0702

Key Words:Bridges; Flutter; Optimization models; Parameters; Bridge; Flutter analysis; Optimization model; Diagrammatical technique; Flutter derivatives; Parametric analysis

Abstract:For long bridges with bluff deck sections, the influence of lateral wind loads on flutter performance needs to be carefully investigated. In this paper, an advanced three-degree-of-freedom (3-DOF) analytical framework considering lateral aeroelastic effects is developed to refine bridge flutter analysis. This approach uses high-order nonlinear equations to determine twin critical flutter parameters, i.e., velocity and frequency. An optimization model to determine the critical flutter parameters is developed. A practical diagrammatical technique is proposed to solve this problem, which is an improvement over the traditional optimization techniques. The intuitiveness and effectiveness of the diagrammatical technique is fully verified using a numerical example. The optimization model and diagrammatical technique are applied to the 3-DOF flutter analyses of two bridges with bluff deck sections. It is revealed that the flutter derivatives H-5(*), H-6(*),A(5)(*) , A(6)(*) and P-i(*) (i=1,2,...,6) play an insignificant role in flutter performance of both bridges. If H-5(*) = H-6(*) = A(5)(*) = A(6)(*) = 0, the P-i(*) (i = 1,2,...,6) will be paralyzed, and the influence of only the conventional eight flutter derivatives, those related to the heaving and torsional motions, can be considered. On the other hand, if P-i(*) = 0(i = 1,2,...,4), H-5(*),(6), A(5,6)(*), and P-* (5,6) will also lose efficacies. These novel findings are first presented, which can be steadily proved by the explicit expression of the optimization model. This study presents a valuable insight into the flutter characteristics of both bridges and explores the roles in the flutter onset played by various parameters. Further, even with bluff deck sections of both bridges, the analytical results of 2-DOF vertical-torsional coupled flutter for the Akashi Kaikyo Bridge and the 1-DOF torsional flutter for the Suramadu Bridge are coincident with the experimental observations. Thus, the effectiveness of analytical framework is again verified.

Pre One:Nonlinear Vibration Characteristics of Bridge Deck Section Models in Still Air

Next One:Aerodynamic Response of a Bridge Girder Segment during Lifting Construction Stage