location: Current position: Home >> Scientific Research >> Paper Publications

Recyclable Capture and Destruction of Aqueous Micropollutants Using the Molecule-Specific Cavity of Cyclodextrin Polymer Coupled with KMnO4 Oxidation

Hits:

Indexed by:Journal Papers

Date of Publication:2015-08-04

Journal:ENVIRONMENTAL SCIENCE & TECHNOLOGY

Included Journals:SCIE、EI、PubMed、PKU、ISTIC、Scopus

Volume:49

Issue:15

Page Number:9264-9272

ISSN No.:0013-936X

Abstract:The removal of aqueous micropollutants remains challenging because of the interference of natural water constituents that are typically 3-9 orders of magnitude more concentrated. Cyclodextrins, which feature molecular recognition and are widely applied in separation and catalysis, are promising materials in the development of pollutant treatment technologies. Here, we described the facile integration of cyclodextrin polymer (CDP) adsorption and KMnO4 oxidation for recyclable capture and destruction of aqueous micropollutants (i.e., antibiotics and TBBPA). CDP exhibited adsorption efficiencies of 0.81-88% and 0.81-94% toward 14 pollutants at 50.0 ng/L and 50.0 mu g/L, respectively, at a solid-to-liquid ratio of 1:1250. The presence of simulated or natural water constituents (e.g., Mg2+, Ca2+, DOC, and a combination thereof) did not decrease the adsorption potential of CDP toward these pollutants because the pollutants, based on molecular specificity, were entrapped in the CD cavity. Subsequent KMnO4 oxidation completely degraded the retained pollutants, demonstrating that the pollutants could be broken down in the cavity. Pristine CDP was rearranged into the structurally loose composites that featured a porous CDP architecture with uniform embedment of delta-MnO2 nanopartides and different adsorption efficiencies. delta-MnO2 loading was a linear function of the number of times the integrated procedure was repeated, underlying the accurate control of CDP recycling. Thus, this approach may represent a new method for the removal of aqueous micropollutants.

Pre One:面向化学品风险评价的计算(预测)毒理学

Next One:Probing the Stereochemistry of Successive Sulfoxidation of the Insecticide Fenamiphos in Soils