蔡喜运

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:浙江大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:环境学院环境楼B411室

联系方式:电话:0411-84707193 (Office) Email:xiyuncai@dlut.edu.cn QQ:1851430298或xycai1978@163.com

电子邮箱:xiyuncai@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Recyclable Capture and Destruction of Aqueous Micropollutants Using the Molecule-Specific Cavity of Cyclodextrin Polymer Coupled with KMnO4 Oxidation

点击次数:

论文类型:期刊论文

发表时间:2015-08-04

发表刊物:ENVIRONMENTAL SCIENCE & TECHNOLOGY

收录刊物:SCIE、EI、PubMed、PKU、ISTIC、Scopus

卷号:49

期号:15

页面范围:9264-9272

ISSN号:0013-936X

摘要:The removal of aqueous micropollutants remains challenging because of the interference of natural water constituents that are typically 3-9 orders of magnitude more concentrated. Cyclodextrins, which feature molecular recognition and are widely applied in separation and catalysis, are promising materials in the development of pollutant treatment technologies. Here, we described the facile integration of cyclodextrin polymer (CDP) adsorption and KMnO4 oxidation for recyclable capture and destruction of aqueous micropollutants (i.e., antibiotics and TBBPA). CDP exhibited adsorption efficiencies of 0.81-88% and 0.81-94% toward 14 pollutants at 50.0 ng/L and 50.0 mu g/L, respectively, at a solid-to-liquid ratio of 1:1250. The presence of simulated or natural water constituents (e.g., Mg2+, Ca2+, DOC, and a combination thereof) did not decrease the adsorption potential of CDP toward these pollutants because the pollutants, based on molecular specificity, were entrapped in the CD cavity. Subsequent KMnO4 oxidation completely degraded the retained pollutants, demonstrating that the pollutants could be broken down in the cavity. Pristine CDP was rearranged into the structurally loose composites that featured a porous CDP architecture with uniform embedment of delta-MnO2 nanopartides and different adsorption efficiencies. delta-MnO2 loading was a linear function of the number of times the integrated procedure was repeated, underlying the accurate control of CDP recycling. Thus, this approach may represent a new method for the removal of aqueous micropollutants.