![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:浙江大学
学位:博士
所在单位:环境学院
学科:环境工程. 环境科学
办公地点:环境学院环境楼B411室
联系方式:电话:0411-84707193 (Office) Email:xiyuncai@dlut.edu.cn QQ:1851430298或xycai1978@163.com
电子邮箱:xiyuncai@dlut.edu.cn
Aquatic Photochemistry of Fluoroquinolone Antibiotics: Kinetics, Pathways, and Multivariate Effects of Main Water Constituents
点击次数:
论文类型:期刊论文
发表时间:2010-04-01
发表刊物:ENVIRONMENTAL SCIENCE & TECHNOLOGY
收录刊物:SCIE、EI、PubMed、PKU、ISTIC、Scopus
卷号:44
期号:7
页面范围:2400-2405
ISSN号:0013-936X
摘要:The ubiquity of fluoroquinolone antibiotics (FQs) in surface waters urges insights into their fate in the aqueous euphotic zone. In this study, eight FQs (ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin, enrofloxacin, gatifloxacin, and balofloxacin) were exposed to simulated sunlight, and their photodegradation was observed to follow apparent first-order kinetics. Based on the determined photolytic quantum yields, solar photodegradation half-lives for the FQs in pure water and at 45 degrees N latitude were calculated to range from 1.25 min for enrofloxacin to 58.0 min for balofloxacin, suggesting that FQs would intrinsically photodegrade fast in sunlit surface waters. However, we found freshwater and seawater constituents inhibited their photodegradation. The inhibition was further explored by a central composite design using sarafloxacin and gatifloxacin as representatives. Humic acids (HA), Fe(III), NO(3)(-), and HA-Cl(-) interaction inhibited the photodegradation, as they mainly acted as radiation filters and/or scavengers for reactive oxygen species. The photodegradation product identification and ROS scavenging experiments indicated that the FQs underwent both direct photolysis and self-sensitized photo-oxidation via center dot OH and (1)O(2). Piperazinyl N(4)-dealkylation was primary for N(4)-alkylated FQs, whereas decarboxylation and defluorination were comparatively important for the other FQs. These results are of importance toward the goal of assessing the persistence of FQs in surface waters.