个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:浙江大学
学位:博士
所在单位:环境学院
学科:环境工程. 环境科学
办公地点:环境学院环境楼B411室
联系方式:电话:0411-84707193 (Office) Email:xiyuncai@dlut.edu.cn QQ:1851430298或xycai1978@163.com
电子邮箱:xiyuncai@dlut.edu.cn
Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound
点击次数:
论文类型:期刊论文
发表时间:2008-04-15
发表刊物:APPLIED CATALYSIS B-ENVIRONMENTAL
收录刊物:SCIE、EI
卷号:80
期号:1-2
页面范围:116-121
ISSN号:0926-3373
关键字:wastewater treatment; peroxymonosulfate; dissolved cobalt ion; heterogeneous catalysis; intermediates
摘要:Nano-Co3O4 was prepared by precipitation method and was successfully applied as heterogeneous catalyst to activate peroxymonosulfate (PMS) and degrade a model compound Acid Orange 7 (AO7). The catalyst exhibits spherical morphologies with minor particle agglomeration, small particle average size (20 nm) and high specific surface area (18 m(2)/g). The degradation kinetics of AO7 induced by nano-Co3O4/PMS system was investigated at both acidic and neutral pH conditions. The heterogeneous character of PMS activation with nano-Co3O4 is more pronounced at neutral pH as indicated by fast degradation rate of AO7 and low dissolved Co ion. The catalyst presented a long-term stability through using the catalyst for multiple runs in the degradation of AO7. The main degradation intermediates of AO7 identified by GC/MS and LC/MS were 4-hydroxybenzenesulfonic acid, 1,2-naphthalenedione, coumarin, phthalic anhydride, phthalimide and 2-formyl-benzoic acid. Proposed degradation pathways were elucidated in light of the analyzed degradation products and frontier electron density theory. (D) 2007 Elsevier B.V. All rights reserved.