李燕

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

电子邮箱:yanli@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Large-scale exploration and analysis of drug combinations

点击次数:

论文类型:期刊论文

发表时间:2015-06-15

发表刊物:BIOINFORMATICS

收录刊物:SCIE、PubMed、Scopus

卷号:31

期号:12

页面范围:2007-2016

ISSN号:1367-4803

摘要:Motivation: Drug combinations are a promising strategy for combating complex diseases by improving the efficacy and reducing corresponding side effects. Currently, a widely studied problem in pharmacology is to predict effective drug combinations, either through empirically screening in clinic or pure experimental trials. However, the large-scale prediction of drug combination by a systems method is rarely considered.
   Results: We report a systems pharmacology framework to predict drug combinations (PreDCs) on a computational model, termed probability ensemble approach (PEA), for analysis of both the efficacy and adverse effects of drug combinations. First, a Bayesian network integrating with a similarity algorithm is developed to model the combinations from drug molecular and pharmacological phenotypes, and the predictions are then assessed with both clinical efficacy and adverse effects. It is illustrated that PEA can predict the combination efficacy of drugs spanning different therapeutic classes with high specificity and sensitivity (AUC = 0.90), which was further validated by independent data or new experimental assays. PEA also evaluates the adverse effects (AUC = 0.95) quantitatively and detects the therapeutic indications for drug combinations. Finally, the PreDC database includes 1571 known and 3269 predicted optimal combinations as well as their potential side effects and therapeutic indications.