李燕

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

电子邮箱:yanli@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

点击次数:

论文类型:期刊论文

发表时间:2015-05-01

发表刊物:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

收录刊物:SCIE、PubMed、Scopus

卷号:16

期号:5

页面范围:9314-9340

ISSN号:1422-0067

关键字:CDK2 (cyclin-dependent kinase 2); binding mechanism; variations

摘要:Cyclin-dependent kinase 2 (CDK2) is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP) binding site (Site I) and two non-competitive binding sites (Site II and III). In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV). All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate). In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.