Zhang Zhao

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Academic Titles:Professor in Process Mechanics

Gender:Male

Alma Mater:Dalian University of Technology

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics, Dalian University of Technology

Discipline:mechanics of manufacturing process. Engineering Mechanics. Computational Mechanics

Business Address:Room 619,Integrated Laboratory building (1#)

Contact Information:

E-Mail:


Paper Publications

Computational investigations on reliable finite element-based thermomechanical-coupled simulations of friction stir welding

Hits:

Date:2019-10-15

Indexed by:Journal Article

Date of Publication:2012-06-01

Journal:INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Included Journals:Scopus、EI、SCIE

Volume:60

Issue:9-12

Page Number:959-975

ISSN:0268-3768

Key Words:Friction stir welding; Constitutive model; Contact model; Material flow

Abstract:The finite element method was used in the current work to study the selection of the constitutive models, the selection of the frictional coefficients, the selection of the contact models and the selection of the physical parameters. Numerical results show that the shape of the shoulder can affect the material flows obviously and a total of about 54.3% energy can be transformed into heat in friction stir welding/friction stir processing (FSW/FSP). When the physical parameters are further considered to be functions of temperature, the predicted temperature is lower than the one in which the physical parameters are constant. When strain-hardening effect is considered, the equivalent plastic strain is decreased and the corresponding energy dissipated by plastic deformation is decreased. The effect of the frictional coefficient on the prediction of the temperature field in FSW/FSP is small when the selection of the frictional coefficient is located in a reasonable small extent. The computational costs in the simulation of FSW/FSP are not only affected by the mesh sizes and wave speed but also affected by the mesh distortions. So, mesh distortions should be considered to be minimized in the numerical modeling of FSW/FSP to reduce the computational costs.

Personal Profile

Zhang Zhao, Ph.D., Professor in Process Mechanics.

Editorial member in Coatings (IF:2.881) from 2020 to 2022.

Editorial member in Crystals (IF:2.589) from 2020 to 2022.

Younth editorial member in Journal of Central South University(IF:1.716) from 2020 to 2022.

Professor Zhang has published more than 60 SCI publications with over 1100 citations. He served as reviewers for more than 30 international journals. His main pulications can be found:

https://orcid.org/0000-0001-7181-8617

https://publons.com/researcher/1987190/zhao-zhang/

The scientific research focuses on experimental and numerical works on friction stir welding/processing/additive manufacturing, numerical modelling and simulation of additive manufacuring, topological design of phononic crystals, locomotive and high speed train design.