Hits:
Indexed by:期刊论文
Date of Publication:2017-09-15
Journal:APPLIED SURFACE SCIENCE
Included Journals:SCIE、EI、Scopus
Volume:416
Page Number:891-900
ISSN No.:0169-4332
Key Words:Hardness; Cyclic loading; Nickel alloy; Transmission electron microscopy; Indentation
Abstract:Nanotwinned (NT) surfaces are developed on a face-centered cubic (fcc) metal with ultrahigh hardness under cyclic loading using plastic deformation at room temperature. The hardness on NT surfaces remains constant at 7.9 and 8.5 GPa indented at 1 and 7 N under 0-100 cycles respectively, which are about three times that of their pristine surfaces. This is different from the NT metals and nonmetallic materials, on which the hardness is about two times that of their pristine counterparts. Moreover, NT metals usually consist of randomly oriented twin and grain boundaries, making it difficult to control the uniform mechanical property. Here, novel nt structure is proposed on an fcc metal, in which all the twin boundaries are along (-1-11) orientation, forming bundles of nanotwins to several micrometers in length. (C) 2017 Elsevier B.V. All rights reserved.