张振宇

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:天津大学

学位:博士

所在单位:机械工程学院

学科:机械制造及其自动化. 机械设计及理论

办公地点:机械工程学院知方楼5055

联系方式:zzy@dlut.edu.cn

电子邮箱:zzy@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide

点击次数:

论文类型:期刊论文

发表时间:2019-09-01

发表刊物:NANO LETTERS

收录刊物:SCIE、EI

卷号:19

期号:9

页面范围:6569-6576

ISSN号:1530-6984

关键字:Piezoresistance coefficient; strain; in situ TEM; electromechanical coupling; SiC

摘要:Reports reveal that the piezoresistance coefficients of silicon carbide (SiC) nanowires (NWs) are 2 to 4 times smaller than those of their corresponding bulk counterparts. It is a challenge to eliminate contamination in adhering NWs onto substrates. In this study, a new setup was developed, in which NWs were manipulated and fixed by a goat hair and conductive silver epoxy in air, respectively, in the absence of any depositions. The goat hair was not consumed during manipulation of the NWs. The process took advantage of the stiffness and tapered tip of the goat hair, which is unlike the loss issue of beam sources in depositions. With the new fixing method, in situ transmission electron microscopy (TEM) electromechanical coupling measurements were performed on pristine SiC NWs. The piezoresistance coefficient and carrier mobility of SiC NW are -94.78 x 10(-11) Pa-1 and 30.05 cm(2) V-3 s(-1), respectively, which are 82 and 527 times respectively greater than those of SiC NWs reported previously. We, for the first time, report that the piezoresistance coefficient of SiC NW is 17 times those of its bulk counterparts. These findings provide new insights to develop high performance SiC devices and to help avoid catastrophic failure when working in harsh environments.