个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor Dr. Hongbin Ding
其他任职:物理学院学术委员会主任,等离子体联合研究中心主任,中国光学工程学会LIBS专委会副主任, 中国核学会核聚变等离子体分会常务理事,辽宁省物理学会副理事长,国际ITER-ITPA 委员
性别:男
毕业院校:巴塞尔大学
学位:博士
所在单位:物理学院
学科:等离子体物理. 光学工程
联系方式:hding@dlut.edu.cn
电子邮箱:hding@dlut.edu.cn
Analysis and removal of ITER relevant materials and deposits by laser ablation
点击次数:
论文类型:期刊论文
发表时间:2014-12-01
发表刊物:JOURNAL OF NUCLEAR MATERIALS
收录刊物:SCIE、EI
卷号:455
期号:1-3
页面范围:180-184
ISSN号:0022-3115
摘要:The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1-27 J/cm(2), power density 0.3-3.9 GW/cm(2)). The mixed deposits consisted of W-Al-C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated. (C) 2014 Elsevier B.V. All rights reserved.