陈志奎

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:teaching

性别:男

毕业院校:重庆大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机软件与理论

办公地点:开发区综合楼405

联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606

电子邮箱:zkchen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

STLIS: A Scalable Two-Level Index Scheme for Big Data in IoT

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:MOBILE INFORMATION SYSTEMS

收录刊物:SCIE、EI

卷号:2016

ISSN号:1574-017X

摘要:The rapid development of the Internet of Things causes the dramatic growth of data, which poses an important challenge on the storage and quick retrieval of big data. As an effective representation model, RDF receives the most attention. More and more storage and index schemes have been developed for RDF model. For the large-scale RDF data, most of them suffer from a large number of self-joins, high storage cost, and many intermediate results. In this paper, we propose a scalable two-level index scheme (STLIS) for RDF data. In the first level, we devise a compressed path template tree (CPTT) index based on S-tree to retrieve the candidate sets of full path. In the second level, we create a hierarchical edge index (HEI) and a node-predicate (NP) index to accelerate the match. Extensive experiments are executed on two representative RDF benchmarks and one real RDF dataset in IoT by comparison with three representative index schemes, that is, RDF-3X, Bitmat, and TripleBit. Results demonstrate that our proposed scheme can respond to the complex query in real time and save much storage space compared with RDF-3X and Bitmat.