![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
Deep Computation Model for Unsupervised Feature Learning on Big Data
点击次数:
论文类型:期刊论文
发表时间:2016-01-01
发表刊物:IEEE TRANSACTIONS ON SERVICES COMPUTING
收录刊物:SCIE、EI
卷号:9
期号:1
页面范围:161-171
ISSN号:1939-1374
关键字:Big data; deep learning model; tensor auto-encoder; back-propagation algorithm; feature learning
摘要:Deep learning has been successfully applied to feature learning in speech recognition, image classification and language processing. However, current deep learning models work in the vector space, resulting in the failure to learn features for big data since a vector cannot model the highly non-linear distribution of big data, especially heterogeneous data. This paper proposes a deep computation model for feature learning on big data, which uses a tensor to model the complex correlations of heterogeneous data. To fully learn the underlying data distribution, the proposed model uses the tensor distance as the average sum-of-squares error term of the reconstruction error in the output layer. To train the parameters of the proposed model, the paper designs a high-order back-propagation algorithm (HBP) by extending the conventional back-propagation algorithm from the vector space to the high-order tensor space. To evaluate the performance of the proposed model, we carried out the experiments on four representative datasets by comparison with stacking auto-encoders and multimodal deep learning models. Experimental results clearly demonstrate that the proposed model is efficient to perform feature learning when evaluated using the STL-10, CUAVE, SANE and INEX datasets.