![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
An Incremental Deep Convolutional Computation Model for Feature Learning on Industrial Big Data
点击次数:
论文类型:期刊论文
发表时间:2019-03-01
发表刊物:IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
收录刊物:SCIE
卷号:15
期号:3
页面范围:1341-1349
ISSN号:1551-3203
关键字:Deep convolutional computation model (DCCM); incremental learning; industrial big data; tensor computation
摘要:The deep convolutional computation model (DCCM) enabled remarkable progress in feature learning of industrial big data in Internet of Things. However, as a typical static deep learning model, it is difficult to learn features for incremental industrial big data. To solve this problem, we propose an incremental DCCM by developing two incremental algorithms, i.e., parameter-incremental algorithm and structure-incremental algorithm. The parameter-incremental algorithm aims to incrementally train the fully connected layers together with fine tuning for incorporating the new knowledge into the prior one. Then, the structure-incremental algorithm is used to transfer the previous knowledge by introducing an updating rule of the tensor convolutional, pooling, and fully connected layers. Furthermore, the dropout strategy is extended into the tensor fully connected layer to improve the robustness of the proposed model. Finally, extensive experiments are carried out on the representative datasets including CIFRA and CUAVE to justify the proposed model in terms of adaption, preservation, and convergence efficiency.