陈志奎

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:teaching

性别:男

毕业院校:重庆大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机软件与理论

办公地点:开发区综合楼405

联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606

电子邮箱:zkchen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Secure weighted possibilistic c-means algorithm on cloud for clustering big data

点击次数:

论文类型:期刊论文

发表时间:2019-04-01

发表刊物:INFORMATION SCIENCES

收录刊物:SCIE、EI

卷号:479

页面范围:515-525

ISSN号:0020-0255

关键字:Big data; Possibilistic c-means algorithm; Cloud computing; BGV

摘要:The weighted possibilistic c-means algorithm is an important soft clustering technique for big data analytics with cloud computing. However, the private data will be disclosed when the raw data is directly uploaded to cloud for efficient clustering. In this paper, a secure weighted possibilistic c-means algorithm based on the BGV encryption scheme is proposed for big data clustering on cloud. Specially, BGV is used to encrypt the raw data for the privacy preservation on cloud. Furthermore, the Taylor theorem is used to approximate the functions for calculating the weight value of each object and updating the membership matrix and the cluster centers as the polynomial functions which only include addition and multiplication operations such that the weighed possibilistic c-means algorithm can be securely and correctly performed on the encrypted data in cloud. Finally, the presented scheme is estimated on two big datasets, i.e., eGSAD and sWSN, by comparing with the traditional weighted possibilistic c-means method in terms of effectiveness, efficiency and scalability. The results show that the presented scheme performs more efficiently than the traditional weighted possiblistic c-means algorithm and it achieves a good scalability on cloud for big data clustering. (C) 2018 Elsevier Inc. All rights reserved.