• 更多栏目

    赵洪霞

    • 教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:中国科学院大连化学物理研究所
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境科学. 环境工程
    • 办公地点:环境楼B709
    • 联系方式:hxzhao@dlut.edu.cn
    • 电子邮箱:hxzhao@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Photochemical reaction of tricresyl phosphate (TCP) in aqueous solution: Influencing factors and photolysis products

    点击次数:

    论文类型:期刊论文

    发表时间:2020-02-01

    发表刊物:CHEMOSPHERE

    收录刊物:EI、PubMed、SCIE

    卷号:241

    页面范围:124971

    ISSN号:0045-6535

    关键字:Tricresyl phosphate (TCP); Environmental factors; Kinetics; Radical analysis; Photolysis products

    摘要:Organophosphate triesters (OPEs) have caused great concern as a class of emerging environmental contaminants due to their widespread use and their toxicity to organisms. However, the phototransformation behavior of OPE is still not fully understood, which is important for understanding their environmental fate. In the present study, the photodegradation of tricresyl phosphate (TCP), one of the most widely detected OPEs in aqueous environments, was investigated including the direct photolysis and in the presence of several natural water factors, NO2-, Fe3+ and humic acid. The degradation process followed the pseudo-first-order kinetics, with rate constant increasing slightly with increasing initial TCP concentration. The presence of NO2- and Fe3+ was observed to promote the photochemical loss of TCP, while humic acid played a negative role on TCP transformation. Electron spin resonance (EPR) analysis showed that carbon-centered radical was produced in the photolysis process of TCP, and hydroxyl radical contributed to the promotion of rate constant for Fe3+ and NOT. Four photolysis products were tentatively identified by HPLC-LTQ-Orbitrap MS analysis, and the possible degradation pathways of TCP were proposed. These findings provide a meaningful reference for the fate and transformation of OPEs in natural water. (C) 2019 Elsevier Ltd. All rights reserved.