高效伟

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 国家重大专项专家组成员、教育部热防护专业组组长、国际华人计算力学协会理事、中国航空学会理事、中国航空学会强度与设计专业委员会委员、国际边界单元法协会会员、教育部高等学校航空航天类专业教学指导委员会委员

性别:男

毕业院校:Glasgow University

学位:博士

所在单位:力学与航空航天学院

办公地点:海宇楼403A

联系方式:0411-84706332

电子邮箱:xwgao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Flow dynamics in transient heat transfer of n-decane at supercritical pressure

点击次数:

论文类型:期刊论文

发表时间:2017-12-01

发表刊物:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

收录刊物:Scopus、SCIE、EI

卷号:115

页面范围:206-215

ISSN号:0017-9310

关键字:Regenerative cooling; Transient response; Thermoacoustic wave; Pressure oscillation; Transient convection

摘要:Turbulent heat transfer of hydrocarbon fuel at supercritical pressure plays a crucial role in regenerative cooling of aerospace propulsion systems. In this paper, flow dynamics in transient heat transfer of n-decane at a supercritical pressure of 5 MPa has been numerically investigated, focusing on the effects of a number of key influential parameters, including the surface heat flux, surface heating rate, cooling tube length, and inlet flow velocity, on the transient responding behaviors. Results indicate that the transient responding process is dictated by two fundamental mechanisms: the initial thermoacoustic oscillation, which is caused by strong fluid thermal expansion, and the subsequent transient convection. The thermoacoustic oscillating magnitude increases as the surface heat flux, surface heating rate, and cooling tube length are increased, but it decreases as the inlet flow velocity is increased. The surface heating rate and cooling tube length also exert strong impacts on the oscillating frequency of the thermoacoustic wave. Moreover, the cooling tube length and inlet flow velocity significantly affect the second-stage transient convective process and thus the total transient responding time, which both increase as the cooling tube length is increased and/or the inlet flow velocity is decreased. Results obtained herein are helpful for fundamental understanding of the transient heat transfer mechanisms relevant to regenerative engine cooling processes. (C) 2017 Elsevier Ltd. All rights reserved.