高效伟

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 国家重大专项专家组成员、教育部热防护专业组组长、国际华人计算力学协会理事、中国航空学会理事、中国航空学会强度与设计专业委员会委员、国际边界单元法协会会员、教育部高等学校航空航天类专业教学指导委员会委员

性别:男

毕业院校:Glasgow University

学位:博士

所在单位:力学与航空航天学院

办公地点:海宇楼403A

联系方式:0411-84706332

电子邮箱:xwgao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Numerical Integration Approach Based on Radial Integration Method for General 3D Polyhedral Finite Elements

点击次数:

论文类型:期刊论文

发表时间:2015-10-01

发表刊物:INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS

收录刊物:SCIE、EI

卷号:12

期号:5

ISSN号:0219-8762

关键字:Polyhedral finite element method; irregular polyhedrons; radial integral method; numerical integrations

摘要:We construct an efficient quadrature method for the integration of the Galerkin weak form over general 3D polyhedral elements based on the radial integration method ( RIM). The basic idea of the proposed method is to convert the polyhedral domain integrals to contour plane integrals of the element by utilizing the RIM which can be used for accurate evaluation of various complicated domain integrals. The quadrature construction scheme for irregular polyhedral elements involves the treatment of the nonpolynomial shape functions as well as the arbitrary geometry shape of the elements. In this approach, the volume integrals for polyhedral elements with triangular or quadrilateral faces are evaluated by transforming them into face integrals using RIM. For those polyhedral elements with irregular polygons, RIM is again used to convert the face integrals into line integrals. As a result, the volume integration of Galerkin weak form over the polyhedral elements can be easily carried out by a number of line integrals along the edges of the polyhedron. Some benchmark numerical examples including the patch tests are utilized to demonstrate the accuracy and convenience of the proposed method.