![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 国家重大专项专家组成员、教育部热防护专业组组长、国际华人计算力学协会理事、中国航空学会理事、中国航空学会强度与设计专业委员会委员、国际边界单元法协会会员、教育部高等学校航空航天类专业教学指导委员会委员
性别:男
毕业院校:Glasgow University
学位:博士
所在单位:力学与航空航天学院
办公地点:海宇楼403A
联系方式:0411-84706332
电子邮箱:xwgao@dlut.edu.cn
A new multiscale computational method for electromechanically coupled analysis of heterogeneous piezoelectric composites
点击次数:
论文类型:期刊论文
发表时间:2015-03-01
发表刊物:JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
收录刊物:SCIE、EI、Scopus
卷号:26
期号:4
页面范围:434-449
ISSN号:1045-389X
关键字:Piezoelectric; multiscale analysis; electromechanical coupling; extended multiscale finite element method; oversampling technique
摘要:This article is concerned with the electromechanically coupled multiscale behaviors of the heterogeneous piezoelectric materials, which consist of periodic or non-periodic distributed microstructures. A multiscale framework based on the extended multiscale finite element method is developed to capture the large-scale solutions on the coarse-scale mesh without resolving the entire small-scale features. In this method, the microscale fluctuations in the mechanical displacement and electrical potential are related to the macroscopic deformation and electrical fields through the multiscale base functions. To improve the accuracy of the multiscale method, the periodic boundary conditions are developed to calculate the multiscale base functions for those piezoelectric structures composed of periodic microstructures. Moreover, the oversampling techniques are introduced to derive the oscillatory boundary conditions to construct the base functions for those piezoelectric structures with non-periodic heterogeneous microscopic features. The efficiency and accuracy of the multiscale method proposed for the piezoelectric materials are validated through the examples where the structures consist of periodic or non-periodic heterogeneous microstructures. The results indicate that the multiscale method developed can effectively obtain the macroscale response of piezoelectric materials (displacement or electrical potential) as well as the response in the microscale (stress or electrical displacement).