![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 国家重大专项专家组成员、教育部热防护专业组组长、国际华人计算力学协会理事、中国航空学会理事、中国航空学会强度与设计专业委员会委员、国际边界单元法协会会员、教育部高等学校航空航天类专业教学指导委员会委员
性别:男
毕业院校:Glasgow University
学位:博士
所在单位:力学与航空航天学院
办公地点:海宇楼403A
电子邮箱:xwgao@dlut.edu.cn
An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals
点击次数:
论文类型:期刊论文
发表时间:2010-11-15
发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
收录刊物:SCIE、EI、Scopus
卷号:199
期号:45-48
页面范围:2856-2864
ISSN号:0045-7825
关键字:Singular integrals; Boundary element method; Radial integration method; Cauchy principal value; Gaussian quadrature
摘要:In this paper, a robust method is presented for numerical evaluation of weakly, strongly, hyper- and super-singular boundary integrals, which exist in the Cauchy principal value sense in two-and three-dimensional problems. In this method, the singularities involved in integration kernels are analytically removed by expressing the non-singular parts of the integration kernels as power series in the local distance p of the intrinsic coordinate system. For three-dimensional boundary integrals, the radial integration method [1] is applied to transform the surface integral into a line integral over the contour of the surface and to remove various orders of singularities within the radial integrals. Some examples are provided to verify the correctness and robustness of the presented method. (C) 2010 Elsevier B.V. All rights reserved.