王巍

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

电子邮箱:weiwang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity

点击次数:

论文类型:期刊论文

发表时间:2018-05-15

发表刊物:JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

收录刊物:SCIE

卷号:461

期号:2

页面范围:1748-1770

ISSN号:0022-247X

关键字:Chemotaxis; Keller-Segel system; Navier-Stokes equation; Global solutions; Decay estimates

摘要:In this paper, we consider the following Keller-Segel-Navier-Stokes system
   {n(t) = Delta n - del. (nS(x,n,c) . del c) - u . del n in Omega x (0, T),
   c(t) = Delta c - c + n . del c in Omega x (0, T),
   u(t) = Delta u - (u . del)u + del P + n del Phi, del . u = 0 in Omega x (0, T),
   subject to the boundary condition del c.v = (del n - nS(x,n, c) . del c).nu = 0, u = 0, and the initial data (n(0)(x), c(0)(x), u(0)(x)), where Omega subset of R-N is a smooth bounded domain with N is an element of {2, 3}, nu denotes the unit outer normal of partial derivative Omega, S is an element of C-2((Omega) over barx [0, infinity)(2))(NxN) and Phi is an element of C1+delta((Omega) over bar) with delta is an element of (0,1). We establish global' classical solutions decaying to the constant steady state ((n) over bar (0), (n) over bar (0), 0) exponentially with (n) over bar (0) := 1/vertical bar Omega vertical bar integral(Omega) n0(x)dx, whenever parallel to n(0)parallel to (L N/2 (Omega)), parallel to del c(0)parallel to)(LN (Omega)) and parallel to u(0)parallel to (LN (Omega)) small enough. (C) 2017 Elsevier Inc. All rights reserved.