个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
电子邮箱:weiwang@dlut.edu.cn
Boundedness in a four-dimensional attraction-repulsion chemotaxis system with logistic source
点击次数:
论文类型:期刊论文
发表时间:2018-09-15
发表刊物:MATHEMATICAL METHODS IN THE APPLIED SCIENCES
收录刊物:SCIE
卷号:41
期号:13
页面范围:4936-4942
ISSN号:0170-4214
关键字:attraction-repulsion; boundedness; chemotaxis; logistic source; parabolic-elliptic
摘要:In this paper, we study the attraction-repulsion chemotaxis system with logistic source: u(t) = u-delta<bold></bold>(u delta v)+delta<bold></bold>(u delta w)+f(u), 0 = v-v+u, 0 = w-w+u, subject to homogeneous Neumann boundary conditions in a bounded and smooth domain < subset of>R4, where ,,,,, and are positive constants, and f:RR is a smooth function satisfying f(s) a-bs(3/2) for all s 0 with a 0 and b > 0. It is proved that when the repulsion cancels the attraction (ie, =), for any nonnegative initial data u0C0(Omega), the solution is globally bounded. This result corresponds to the one in the classical 2-dimensional Keller-Segel model with logistic source bearing quadric growth restrictions.