location: Current position: Home >> Scientific Research >> Paper Publications

Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms

Hits:

Indexed by:期刊论文

Date of Publication:2019-01-01

Journal:CHEMOSPHERE

Included Journals:SCIE、PubMed、Scopus

Volume:214

Page Number:79-84

ISSN No.:0045-6535

Key Words:Adsorption equilibrium coefficient (logK); Theoretical (in silico) molecular structure descriptors; Quantitative structure-activity relationship; Multiple linear regression (MLR); Support vector machine (SVM)

Abstract:Prediction of adsorption equilibrium coefficients (K) of organic compounds onto single walled carbon nanotubes (SWNTs) from in silico molecular descriptors is of importance for probing potential applications of SWNTs as well as for evaluating environmental behavior and ecological risks of organic pollutants and SWNTs. In this study, two models for predicting logK were developed with multiple linear regression (MLR) and support vector machine (SVM) algorithms. The two models have satisfactory goodness-of-fit, robustness and predictive ability, and the SVM model performs slightly better than the MLR model. The two models are based on the up-to-date experimental dataset consisting of 61 logK values, and the applicability domains cover diverse organic compounds with functional groups > C=C<, -C  C-, -C6H5, >C=O, -COOH, -C(O)O-, -OH, -O-, -F, -Cl, -Br, -NH2, -NH-, >N-, >N-N<, -NO2, >N-C(O)-NH2, >N-C(O)-NH-, -S- and -S(O)(O)-. The adsorption of organic compounds toward SWNTs is mainly determined by van der Waals forces and hydrophobic interactions. Since only in silico molecular descriptors were employed for the modeling, the developed models are beneficial for prediction purposes. (C) 2018 Elsevier Ltd. All rights reserved.

Pre One:Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China

Next One:Profile and source apportionment of volatile organic compounds from a complex industrial park