location: Current position: Home >> Scientific Research >> Paper Publications

Theoretical Study of High-sensitivity Surface Plasmon Resonance Fiber Optic Sensing technology

Hits:

Indexed by:会议论文

Date of Publication:2011-05-24

Included Journals:EI、CPCI-S、Scopus

Volume:8191

Key Words:Surface plasmon resonance; fiber optics; sensors; numerical simulation; nanoparticles; polymer; sensitivity; spectroscopy

Abstract:Surface Plasmon Resonance (SPR) has been widely investigated for chemical and biological sensing applications. Especially, fiber optic SPR sensors have recently drawn considerable attention because of their fundamentally simpler structure, lower cost, and suitability for remote-sensing applications. This paper will present a research work for a novel multichannel SPR sensing technology. Based on the Kretschmann's SPR theory, we theoretically investigate the surface parameters effects to SPR wavelength changes. Emphasis will be placed on a theoretical design and numerical simulation of a multichannel fiber optic SPR sensing scheme based on a geometrical tapered fiber optic sensor probe that coated with nanoparticles imprinted polymer on the SPR sensing region. The parameter effects of SPR sensing area that include metal thickness, sensing area length and dielectric overcoat layer. SPR spectra that change with incidence angle and wavelength are investigated by using numerical calculations and simulations. While nanoparticles imprinted polymer for enhancement of sensitivity can serve as an enhanced transduction mechanism for recognition and sensing of target analytes in accordance with different requirements, the scheme of a multichannel fiber optic SPR sensor can be further adapted to the design and development of multi-channel optical fibers SPR sensor probes by combining SPR with other technology as a comprehensive sensor design.

Pre One:Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings

Next One:Frequency division multiplexing of Extrinsic Fabry-Perot Interferometric (EFPI) optical fiber sensor