个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:大连理工大学创新园大厦B1405
联系方式:0411-84708351-8205
电子邮箱:yangjiee@dlut.edu.cn
A Split-Complex Valued Gradient-Based Descent Neuro-Fuzzy Algorithm for TS System and Its Convergence
点击次数:
论文类型:期刊论文
发表时间:2019-10-01
发表刊物:NEURAL PROCESSING LETTERS
收录刊物:SCIE
卷号:50
期号:2
页面范围:1589-1609
ISSN号:1370-4621
关键字:Neuro-fuzzy; TS system; Split-complex valued; Neural networks; Convergence
摘要:In order to broaden the study of the most popular and general Takagi-Sugeno (TS) system, we propose a complex-valued neuro-fuzzy inference system which realises the zero-order TS system in the complex-valued network architecture and develop it. In the complex domain, boundedness and analyticity cannot be achieved together. The splitting strategy is given by computing the gradients of the real-valued error function with respect to the real and the imaginary parts of the weight parameters independently. Specifically, this system has four layers: in the Gaussian layer, the L-dimensional complex-valued input features are mapped to a Q-dimensional real-valued space, and in the output layer, complex-valued weights are employed to project it back to the complex domain. Hence, split-complex valued gradients of the real-valued error function are obtained, forming the split-complex valued neuro-fuzzy (split-CVNF) learning algorithm based on gradient descent. Another contribution of this paper is that the deterministic convergence of the split-CVNF algorithm is analysed. It is proved that the error function is monotone during the training iteration process, and the sum of gradient norms tends to zero. By adding a moderate condition, the weight sequence itself is also proved to be convergent.