杨洁

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:大连理工大学创新园大厦B1405

联系方式:0411-84708351-8205

电子邮箱:yangjiee@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

用于神经网络权值稀疏化的L_(1/2)正则化方法

点击次数:

发表时间:2015-01-01

发表刊物:中国科学 数学

所属单位:数学科学学院

卷号:45

期号:9

页面范围:1487-1504

ISSN号:1674-7216

摘要:On the premise of appropriate learning accuracy, the number of the
   neurons of a neural network should be as less as possible
   (constructional sparsification), so as to reduce the cost, and to
   improve the robustness and the generalization accuracy. We study the
   constructional sparsification of feedforward neural networks by using
   regularization methods. Apart from the traditional L1 regularization for
   sparsification, we mainly use the L_(1/2) regularization. To remove the
   oscillation in the iteration process due to the nonsmoothness of the
   L_(1/2) regularizer, we propose to smooth it in a neighborhood of the
   nonsmooth point to get a smoothing L_(1/2) regularizer. By doing so, we
   expect to improve the efficiency of the L_(1/2) regularizer so as to
   surpass the L1 regularizer. Some of our recent works in this respect are
   summarized in this paper, including the works on BP feedforward neural
   networks, higher order neural networks, double parallel neural networks
   and Takagi-Sugeno fuzzy models.

备注:新增回溯数据