杨洁

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:大连理工大学数学科学学院505

联系方式:0411-84708351-8205

电子邮箱:yangjiee@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Modified Spiking Neuron that Involves Derivative of the State Function at Firing Time

点击次数:

论文类型:期刊论文

发表时间:2012-10-01

发表刊物:NEURAL PROCESSING LETTERS

收录刊物:SCIE、EI、Scopus

卷号:36

期号:2

页面范围:135-144

ISSN号:1370-4621

关键字:Spiking neuron; Firing time; Derivative of the state function

摘要:In usual spiking neural networks, the real world information is interpreted as spike time. A spiking neuron of the spiking neural network receives input vector of spike times, and activates a state function x(t) by increasing the time t until the value of x(t) reaches certain threshold value at a firing time t (a) . And t (a) is the output of the spiking neuron. In this paper we propose, and investigate the performance of, a modified spiking neuron, of which the output is a linear combination of the firing time t (a) and the derivative x'(t (a) ). The merit of the modified spiking neuron is shown by numerical experiments for solving some benchmark problems: The computational time of a modified spiking neuron is a little greater than that of a usual spiking neuron, but the accuracy of a modified spiking neuron is almost as good as a usual spiking neural network with a hidden layer.