个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:天津大学
学位:博士
所在单位:机械工程学院
学科:测试计量技术及仪器. 精密仪器及机械
办公地点:机械知方楼6128
联系方式:0411-84707713
电子邮箱:ren_tq@dlut.edu.cn
Structural state detection using quaternion-based three-channel joint transmissibility
点击次数:
论文类型:期刊论文
发表时间:2015-03-01
发表刊物:JOURNAL OF VIBROENGINEERING
收录刊物:SCIE、EI、Scopus
卷号:17
期号:2
页面范围:928-938
ISSN号:1392-8716
关键字:quaternion-based three-channel joint transmissibility; state detection; quaternion sequences; Karhunen-Loeve transform
摘要:This paper presented the use of quaternion-based three-channel joint transmissibility (QTJT) in structural state detection. During the detection process, the time-domain pure quaternion sequences were obtained based on the three dimensional spatial vibration signals from two different testing points. Then QTJTs of the object structure under different states were calculated by discrete quaternion Fourier transform (DQFT). Subsequently, modular vectors of the QTJTs were utilized to construct the state matrix of the object structure and the Karhunen-Loeve Transform (K-LT) was employed to calculate the state feature index vectors. Finally, Euclidean distance between state feature index vectors was obtained, which was considered as the state indicator. An actual experiment was performed on the test platform of ballastless track and the result with 100 percent correct identification was achieved. Combined with the experimental results, the advantages of QTJT comparing to transmissibility based on scalar signals were discussed. The QTJT can be used when the vibration composes from multiple dimensional synchronous vibrations. And more importantly, the QTJT is consistent with its theoretical value in spite of the installation orientation of the sensors.