• 更多栏目

    孙亮

    • 副教授       硕士生导师
    • 性别:男
    • 毕业院校:吉林大学
    • 学位:博士
    • 所在单位:计算机科学与技术学院
    • 学科:计算机应用技术
    • 办公地点:创新园大厦B802
    • 联系方式:15998564404
    • 电子邮箱:liangsun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Cooperative Hierarchical PSO With Two Stage Variable Interaction Reconstruction for Large Scale Optimization

    点击次数:

    论文类型:期刊论文

    发表时间:2017-09-01

    发表刊物:IEEE TRANSACTIONS ON CYBERNETICS

    收录刊物:SCIE、EI、Scopus

    卷号:47

    期号:9,SI

    页面范围:2809-2823

    ISSN号:2168-2267

    关键字:Contingency leadership; cooperative optimization; marginalized denoising; variable interaction reconstruction

    摘要:Large scale optimization problems arise in diverse fields. Decomposing the large scale problem into small scale subproblems regarding the variable interactions and optimizing them cooperatively are critical steps in an optimization algorithm. To explore the variable interactions and perform the problem decomposition tasks, we develop a two stage variable interaction reconstruction algorithm. A learning model is proposed to explore part of the variable interactions as prior knowledge. A marginalized denoising model is proposed to construct the overall variable interactions using the prior knowledge, with which the problem is decomposed into small scale modules. To optimize the subproblems and relieve premature convergence, we propose a cooperative hierarchical particle swarm optimization framework, where the operators of contingency leadership, interactional cognition, and self-directed exploitation are designed. Finally, we conduct theoretical analysis for further understanding of the proposed algorithm. The analysis shows that the proposed algorithm can guarantee converging to the global optimal solutions if the problems are correctly decomposed. Experiments are conducted on the CEC2008 and CEC2010 benchmarks. The results demonstrate the effectiveness, convergence, and usefulness of the proposed algorithm.