Indexed by:期刊论文
Date of Publication:2016-09-20
Journal:ELECTROCHIMICA ACTA
Included Journals:SCIE、EI、CPCI-S、Scopus
Volume:213
Page Number:252-259
ISSN No.:0013-4686
Key Words:Dye-sensitized solar cells; Counter electrode; ZIF-67 derived catalysts; One-step carbonization; Photovoltaic performance
Abstract:In this work, a facile one-step approach is reported for using ZIF-67 as a sacrificial template in the synthesis of a counter electrode (CE) catalyst for dye-sensitized solar cells (DSCs). Porous nanocomposites of Co, CoO and N-doped graphitic carbon were synthesized by controlling the carbonization temperature of the templates in a N-2 atmosphere. The characterization of the structure of the products indicated that cobalt nanoparticles were embedded in an N-doped graphitic carbon matrix, (a core-shell structure termed Co@NGC) while cobalt and cobalt oxide nanoparticles were exposed on the external surface of the carbon (termed Co/CoO). In particular, the chemical stability of the nanostructure of the Co@NGC was superior to Co/CoO with respect to etching by strong acids such as hydrochloric acid (HCl, 0.1 M). The DSC performance of ZIF-67-850 (pyrolyzed at 850 degrees C) employed as a CE resulted in a photoelectric conversion efficiency (PCE) of 7.92%, which was close to a Pt CE (8.18%) in the liquid I-3 /I redox couple electrolyte. The excellent performance of ZIF-67-850 can be attributed to the synergetic effects between the Co and CoO coupled with the nitrogen doped graphitic carbon. The cost-effective porous Co/CoO and Co@NGC nanocomposites exhibit great potential for application as high performance CE in solar cells. (C) 2016 Elsevier Ltd. All rights reserved.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:清华大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Physical Chemistry (including Chemical Physics). Materials Physics and Chemistry. Inorganic Chemistry
Business Address:西部校区化工综合楼C313
Contact Information:0411-84986237
Open time:..
The Last Update Time:..