Indexed by:期刊论文
Date of Publication:2018-06-15
Journal:MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
Included Journals:SCIE、EI
Volume:80
Page Number:131-136
ISSN No.:1369-8001
Key Words:Perovskite; Light-emitting diodes; Delayed electroluminescence; Electron transport layers
Abstract:Here, two series CH3NH3PbI3 based perovskite light-emitting diodes (Pe-LEDs) were synthesized with TiO2 and SnO2 as electron transport layer (ETL), respectively. An exceptional ultra-long rise time (T-r) persisting to tens of seconds was observed in time-resolved electroluminescence (EL) characteristics from the Pe-LEDs as driven with constant voltage, which might be intrinsic to the MAPbI(3) perovskite layer regardless of the ETL materials. Qualitatively, SnO2 based ETL was preferred than the TiO2 ETL counterpart for faster response Pe-LED devices with lower T-r. Moreover, the T-r of Pe-LED can be adjusted in the range of 10-28 s by precisely controlling the thickness of SnO2 ETL. In addition, the similar trend was also confirmed in the SnO2 ETL thickness dependent hysteresis index deduced from current-voltage (J-V) characteristics. The mechanism was interpreted by means of dynamics of carrier injection and transport at the perovskite/ETL interface. These achievement may contribute to better understanding of the origin and mechanism of the slow process in EL characteristics, and hence favorable for minimizing this detrimental effects.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:清华大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Physical Chemistry (including Chemical Physics). Materials Physics and Chemistry. Inorganic Chemistry
Business Address:西部校区化工综合楼C313
Contact Information:0411-84986237
Open time:..
The Last Update Time:..