Indexed by:期刊论文
Date of Publication:2017-08-01
Journal:NANO ENERGY
Included Journals:SCIE、EI、Scopus
Volume:38
Page Number:358-367
ISSN No.:2211-2855
Key Words:Mesoscopic perovskite solar cells; Blended-interfacial-layer; Electron transfer; Tin oxide; High efficiency
Abstract:Based on a blended-interfacial-layer (BIL) with strongly coupled four components (FTO, SnO2, TiO2 and perovskite), we demonstrate in this work the design of a more advanced electron transfer layer (ETL) for mesoscopic PSCs. For the new ETL, SnO2 is a key component and is found to be essential to lower series resistance and enhance shunt resistance. Photovoltaic performance of PSCs using new ETL is much better than that of PSCs based on traditional ETL. In addition, the new ETL has been proved to be more advantageous in avoiding interfacial degradation and improving stability of the device.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:清华大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Physical Chemistry (including Chemical Physics). Materials Physics and Chemistry. Inorganic Chemistry
Business Address:西部校区化工综合楼C313
Contact Information:0411-84986237
Open time:..
The Last Update Time:..