Indexed by:Journal Papers
Date of Publication:2016-10-18
Journal:PHYSICAL REVIEW B
Included Journals:SCIE、Scopus
Volume:94
Issue:14
ISSN No.:2469-9950
Abstract:The high efficiency of perovskite solar cells benefits from the high density of photoinduced free carriers. We studied how exciton and free carriers, as the two major photoproducts, coexist inside the CH3NH3PbI3 perovskite. A new density-resolved spectroscopic method was developed for this purpose. The density-dependent coexistence of excitons and free carriers over a wide density range was experimentally observed. The quantitative analysis on the density-resolved spectra revealed a moderate exciton binding energy of 24 +/- 2 meV. The results effectively proved that the strong ionic polarization inside the perovskite has a negligible contribution to exciton formation. The spectra also efficiently uncovered the effective mass of electron-hole pairs. Our spectroscopic method and the results profoundly enrich the understanding of the photophysics in perovskite materials for photovoltaic applications.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:清华大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Physical Chemistry (including Chemical Physics). Materials Physics and Chemistry. Inorganic Chemistry
Business Address:西部校区化工综合楼C313
Contact Information:0411-84986237
Open time:..
The Last Update Time:..