个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:清华大学
学位:博士
所在单位:化学学院
学科:物理化学. 材料物理与化学. 无机化学
办公地点:西部校区化工综合楼C313
联系方式:0411-84986237
电子邮箱:shiyantao@dlut.edu.cn
Ultrarapid Sonochemical Synthesis of ZnO Hierarchical Structures: From Fundamental Research to High Efficiencies up to 6.42% for Quasi-Solid Dye-Sensitized Solar Cells
点击次数:
论文类型:期刊论文
发表时间:2013-03-26
发表刊物:CHEMISTRY OF MATERIALS
收录刊物:SCIE、EI、Scopus
卷号:25
期号:6
页面范围:1000-1012
ISSN号:0897-4756
关键字:sonochemical synthesis; ZnO hierarchical structure; photovoltaic; quasi-solid; dye-sensitized solar cell
摘要:Zinc oxide (ZnO) hierarchical structures (HSs) have recently demonstrated notable photochemical and photovoltaic performances attributed to their nano/micro combined architectures. In this study, ZnO HSs were synthesized at room temperature using ultrarapid sonochemistry. This novel approach can effectively overcome deficiencies in the synthesis via traditional direct precipitation by promoting nucleation and accelerating diffusion. Only 15 min was needed to complete the formation of highly crystallized and uniformed HSs consisting of interconnected monocrystalline nanosheets using sonochemistry. The formation of HSs through in situ observations was interpreted using a new mechanism based on oriented attachment and reconstruction. In the nonequilibrium synthesis system, thicker, porous, and coarse crystallized ZnO sheets were first constructed via oriented attachment of small-sized nanocrystals. After reconstruction, untrathin, integrated, and monocrystalline nanosheets were obtained. According to the two-dimensional nanosheets to three-dimensional HSs, the formation was much more sophisticated because repeated and parallel heterogeneous oriented attachments with reconstructions dominated the final morphologies of the HSs. The relationships between synthetic conditions and HSs structures were established. Based on the photoanodes in dye-sensitized solar cells (DSCs), the performances of these differently structured HSs were tested. HSs with densely assembled nanosheets exhibited better performances in photoelectric conversions. Systematic investigations were also carried out by selecting two representative HSs to demonstrate the critical factors governing the optical and electrical properties of photoanodes. Finally, under AM 1.5 and 100mW cm(-2) light irradiation, high photoelectric conversion efficiencies of up to 6.42% were achieved. These results established a new record for quasi-solid ZnO-based DSCs.