史彦涛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:清华大学

学位:博士

所在单位:化学学院

学科:物理化学. 材料物理与化学. 无机化学

办公地点:西部校区化工综合楼C313

联系方式:0411-84986237

电子邮箱:shiyantao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells

点击次数:

论文类型:期刊论文

发表时间:2013-02-28

发表刊物:ELECTROCHIMICA ACTA

收录刊物:SCIE、EI

卷号:91

页面范围:302-306

ISSN号:0013-4686

关键字:Printable; Polymer gel electrolyte; P(VA-co-MMA); Quasi-solid-state dye-sensitized solar cells

摘要:Novel polymer gel electrolytes (PGEs) with high ionic conductivity based on polyvinyl (acetate-co-methyl methacrylate) [P(VA-co-MMA)] were prepared by soaking porous copolymers in an organic electrolyte solution [acetonitrile (ACN) or 3-Methoxypropionitrile (MPN)] that contained an I-3(-)/I- as redox couple. Quasi-solid-state dye-sensitized solar cells (QS-DSSCs) were fabricated with the PGEs, and the best PGE was selected and optimized. Using the best PGE and under 100 mW cm(-2) light illumination (AM1.5), the QS-DSSC achieved a high photovoltaic conversion efficiency of 9.10%, nearly the same as that for the DSSC based on the original liquid electrolyte. Introduction of TiO2 nanoparticles into the PGEs further enhanced PGEs ionic conductivity and the conversion efficiency to 9.40%. Subsequent results revealed that our QS-DSSC had a better stability because it could maintain 96.7% of its initial efficiency after long-time (1000 h) exposure to simulative sunlight. Besides, for the first time, large-area QS-DSSCs were fabricated by screen printing of PGE, other than the traditional vacuum injection that was infeasible for the viscous gel electrolyte. Finally, our 5 cm x 7 cm QS-DSSC sub-module exhibited a conversion efficiency higher than 4%. (C) 2013 Elsevier Ltd. All rights reserved.